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Abstract
The cougar (Puma concolor) is a large predatory feline found widely in the Americas that is
susceptible to feline immunodeficiency virus (FIV), a fast-evolving lentivirus found in wild feline
species that is analogous to simian immunodeficiency viruses in wild primates and belongs to the
same family of viruses as human immunodeficiency virus. FIV infection in cougars can lead to a
weakened immune system that creates opportunities for other infecting agents. FIV prevalence and
lineages have been studied previously in several areas in the western United States, but typically
without spatially explicit statistical techniques. To describe the distribution of FIV in a sample of
cougars located in the northern Rocky Mountain region of North America, we first used kernel
density ratio estimation to map the log relative risk of FIV. The risk surface showed a significant
cluster of FIV in northwestern Montana. We also used Bayesian cluster models for genetic data to
investigate the spatial structure of the feline immunodeficiency virus with virus genetic sequence
data. A result of the models was two spatially distinct FIV lineages that aligned considerably with
an interstate highway in Montana. Our results suggest that the use of spatial information and
models adds novel insight when investigating an infectious animal disease. The results also
suggest that the influence of landscape features likely plays an important role in the spatiotemporal
spread of an infectious disease within wildlife populations.
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1. Introduction
Diseases such as SARS, monkeypox, avian influenza, West Nile virus, Lyme disease, and
human immunodeficiency virus (HIV) represent examples of infectious diseases which have
crossed or are crossing over to humans from contemporary or historical animal reservoirs.
Recent outbreaks of such diseases capture the attention of both the general public and the
scientific community with respect to the interaction of population, landscape, and inter- and
intra-species factors in defining outbreaks and sustained reservoirs of infectious disease.
Some of these diseases evolve to allow direct human-to-human transmission (e.g., HIV,
H1N1 influenza, and feared mutations of H5N1 influenza), but considerable health impacts
exist even in the absence of such transmission.

In order to understand effective prevention and treatment of human cases of such diseases,
the comments above suggest that it is critical to understand the entire disease system, i.e.,
the ecology of the disease. Research in disease ecology seeks to quantify and describe the
complex interactions between disease incidence in a specific host and a variety of
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ecological/environmental processes. Research often focuses on infectious diseases, where
investigators attempt to summarize the virulence of the pathogen, the primary route of
infection, the role of any vectors, reservoir hosts, and environmental impacts on the disease
transmission process. One can consider the term “environmental” very broadly, here,
possibly including social contact networks, healthcare utilization, species interaction, as well
as more familiar measures of climate, physical features, and land use.

The fundamental theory of disease ecology is well-established and the idea of studying
interactions between animals, humans, pathogens, and environment appear throughout the
literature in several forms and across several disciplines. Some relevant fields related to
disease ecology include landscape ecology or landscape epidemiology, landscape genetics,
conservation medicine, and conservation ecology. Landscape epidemiology is the study of
the influence of the physical landscape on the spread and pattern of infectious disease
(Paulousky 1966). Landscape genetics focuses on the genetic differentiation of species into
subpopulations and the influence that landscape features has on the formation of
subpopulations (Manel et al. 2003, Storfer et al. 2007). The notion of geographic structure
among genetic subpopulations has been the subject of recent work in population structure
and selection by Rousset (2004) and in phylogeography by Avise (2000), building on early
work by Wright (1943, 1946). Recent efforts also attempt to expand empirical methods to
use spatial pattern to describe population genetics (Epperson 2003, Guillot et al. 2009a).
Conservation medicine addresses the intersection of animal health, human health, and
ecosystem health (Aguire et al. 2002, Weinhold 2003). Conservation ecology is primarily
concerned with the preservation of suitable habitats of interest. These individual fields of
study interrelate with each other within disease ecology. Landscape genetics is related to
conservation medicine and conservation ecology, where understanding the role that
landscape has on species differentiation is also important for managing the health of animal
populations and preserving habitat that ensures genetic diversity in animal populations.
Landscape genetics and landscape epidemiology are related, as several studies have shown
an association between population genetic diversity and infection dynamics (Barone et al.
1994, Ernest et al. 2003, Heeney et al. 1990, Wildt et al. 1987).

The concepts of landscape epidemiology and landscape genetics are particularly relevant
branches of disease ecology motivating the analysis below, which explores the spatial
distribution of feline immunodeficiency virus (FIV) and the spatial structure of this virus
within a sample of cougars. FIV is a fast-evolving lentivirus that is analogous to simian
immunodeficiency viruses in wild primates (Biek et al. 2003, Troyer et al. 2005), belonging
to the same family of viruses as HIV. Strains of FIV are species-specific in the family
Felidae, and cougars have their own type of FIV, called FIVPCO. For convenience in
notation, we will refer to the disease in the cougar data as FIV. FIV is spread through
horizontal transmission through saliva, typically through bites or scratches during mating or
territorial fights, and through vertical transmission from an infected dam to offspring (Biek
et al. 2003). An FIV infection in cougars can result in a similar disease state as an HIV
infection in humans, characterized by a weakened immune system that creates opportunities
for other infecting agents, which can lead to a fatality in the host organism. However,
reaction to FIV infection is stronger in domestic cats than in wild felines, and cougars
infected with FIV generally remain asymptomatic (Blake et al. 2006). The overall
prevalence of FIV in cougars is estimated to be 30% in North and South America, or 31%
when limited to North America (Carpenter et al. 1996, Blake et al. 2006). The relatively fast
rate of evolution of the virus makes it useful in studying its host population dynamics (Biek
et al. 2006), where population patterns not evident in the host genetic data may be revealed.

The cougar (Puma concolor) is a large predatory feline distributed throughout South
America and parts of North America. Cougars prefer habitats rich with vegetation and land
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cover due to their hunting technique of stalking prey. While cougars have a preferred
habitat, they are fairly mobile and will move within a home range to find prey. Estimates for
home ranges for cougars fall between 10 and 500 square miles, depending on sex (Cougar
Discussion Group 2009). Cougar movement is believed to be influenced by both natural and
manmade landscape barriers. Over time this restriction of movement could lead to spatial
structure in both population genetic structure and FIV lineages that aligns with landscape
features. In fact, there are several examples in the literature of cougar genetic diversity
aligning with various landscape barriers (Ernest et al. 2003, Loxterman 2001, McRae et al.
2005, Walker et al. 2000). There has been no previous work to investigate whether any
spatial structure in the feline immunodeficiency virus within infected cougars is associated
with landscape features.

There are several objectives for this paper. We first seek to describe the spatial distribution
of cougar FIV in the northern Rocky Mountain region in a population of free-ranging
cougars, and then determine the number and composition of genetically distinct clusters of
the virus. We also wish to assess whether spatial structure in FIV aligns with landscape
barriers and previously identified genetic population structure in cougars. We describe the
spatial distribution of FIV using kernel density estimation and the FIV status for each of the
sampled cougars. We investigate spatial structure in the feline immunodeficiency virus itself
using the virus sequence data for FIV infected cougars and Bayesian cluster models. We
then assess whether spatial structure in FIV aligns with landscape features that may impact
host movement using a geographic information system (GIS).

2. Distribution of FIV
2.1 Data

Our data contain the geographic coordinates for the sample location of each of 354 cougars
caught for research purposes or killed by hunters in the northern Rocky Mountain regions of
Idaho and Montana and extending into Alberta and British Columbia, Canada during
1990-2004. The data also include FIV infection status (positive: n = 100, negative: n = 254)
for each cougar and virus sequence data for most FIV infected cougars (n = 85). The virus
sequence data consists of a 1423 nucleotide sequence (A, C, G, T) for each cougar. FIV
infection and the virus sequence data were derived using standard techniques and protocols
in a previous lab analysis of DNA from blood and tissue samples (Biek et al. 2006).
Detection of FIV was done through polymerase chain reaction with amplification of the pol
and env genes (Biek et al. 2006). Biek et al. (2006) previously analyzed the virus sequence
data independently of geographic locations of the sampled cougars to determine FIV lineage
(aspatially).

The estimate of crude prevalence of FIV in this area from 1990-2004 is 0.28 (100/354),
consistent with the referenced prevalence estimates above. To initially explore the spatial
distribution of FIV infection in this sample of infected and uninfected cougars, we first
mapped the sampled cougars according to FIV infection status in a geographic information
system (Figure 1). There is an uneven distribution of FIV cases in the study area. For
example, there is an area in northwestern Montana with many FIV cases, as well as area in
south-central Montana with several cases. There is a nearly linear swath of mostly non-
cases, with very few cases, located between these two areas, parallel to the southwestern
border of Montana.

2.2 Spatial Log Relative Risk of FIV Infection
To investigate whether there are any variations in spatial patterns between FIV infected and
non-infected cougars, we treated the two data sets as realizations of two spatial point
processes over the same study area and sought to determine where the local intensities
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(number of data locations per unit area) appeared to differ. Note that the spatial sampling is
not uniform but we assumed there is no difference in sampling between FIV-positive and
FIV-negative cougars, i.e., we assumed FIV status does not impact behavior of either
cougars or hunters. For this analysis, we first estimated the densities of infected and
uninfected cougars using kernel density estimation (Kelsall and Diggle 1995; Waller and
Gotway 2004). We performed kernel density estimation in R using the KernSmooth
package. The kernel density function method estimates the probability of an event occurring
at a location s in space, using a kernel function to count events over space. We defined a
51×51 regular grid to cover the study area and then estimate the density at each grid point.
We limited the spatial extent of the analysis area to exclude two uninfected observations on
the far eastern edge of the study area that we considered spatial outliers. The kernel function
uses a bandwidth that determines the extent of the kernel and the overall smoothness of the
resulting estimated density surface. We used Scott's (1992) rule for optimal bandwidth
selection in a Gaussian kernel, where there are kernel bandwidths in both the x and y
direction in spatial coordinates recorded as (x, y). Scott's rule considers the number of events
and spatial variance of events in a point pattern when calculating the kernel bandwidth. We
used kernel bandwidths of approximately 48 miles in the x and y directions for both FIV
positive and uninfected cougars. The patterns of probability of FIV infected and non-
infected cougars over space are somewhat different, especially in a north-central portion of
the study area, in northwestern Montana, where the probability of cases is higher than the
probability of controls (Figure 2). These patterns suggest a relatively higher risk of FIV in
northwestern Montana than elsewhere in the study area.

To estimate the risk of FIV throughout the study area, we estimated the log relative risk at
each grid point as the log ratio of the kernel density for infected cougars to the kernel
density of uninfected cougars, with the same bandwidth, approximately 44 miles, used in
both directions for each kernel (Kelsall and Diggle 1995). The log relative risk surface and
log relative risk contour lines (Figure 3) show that the risk for FIV is largest near the center
of the study area, in northwestern Montana. The largest relative risk in this area just exceeds
3, suggesting that cougars sampled in this area were approximately 3 times more likely to be
FIV-positive than FIV-negative. We assessed statistical significance of local deviations in
the surface through Monte Carlo “random labeling” wherein the labels of “infected” or
“non-infected” are permuted over the observed study locations, thereby providing tolerance
bands around the null value of zero and inference regarding local maxima and minima. The
log relative risk contour plot shows the statistically significant areas of log relative risk
using the 97.5% upper tolerance limits from 999 Monte Carlo randomizations of the case
labels with hatched symbols (“+”). These significant local clusters of elevated log relative
risk correspond to the higher points on the log relative risk surface map.

3. Spatial Structure of FIV Sequence Data
3.1 Methods

In addition to analyzing the pattern of FIV infection, it is also possible to investigate the
spatial genetic pattern of the feline immunodeficiency virus through analysis of the
geolocated virus sequence data. One possible analytical approach is to analyze the virus
sequence data as genetic data (e.g. microsatellite, single nucleotide polymorphisms)
typically used when assessing genetic population structure with Bayesian cluster models.
Bayesian clustering models are now popular tools in population genetics to delineate genetic
structure in populations and detect factors influencing gene flow (see, for example, Frantz et
al. 2009, McCairns and Bernatchez 2008). The Bayesian clustering models used in
population genetics are more complicated than the traditional clustering methods found in
the unsupervised learning literature (see Berk 2008, Hastie et al. 2001) because they are
designed for outcome (genetic) data that are multivariate and categorical. The approach of
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applying these models to virus sequence data would allow one to classify virus lineage, an
indication of differentiation in virus strain, from virus sequence data and spatial information.
We explore this potentially useful technique to study spatial structure in cougar FIV lineage.

There are several types of Bayesian clustering models designed for analyzing genetic
population structure in genetic data. Bayesian cluster models designed for genetic data seek
to answer several questions, such as how many subpopulations exist in a population, what is
the composition of each subpopulation, and what is the posterior probability of each
individual belonging to each subpopulation. Bayesian spatial cluster models seek to identify
spatial structure in the subpopulations. The structure found may then be overlaid with
landscape features to identify features that may represent physical barriers to genetic flow.
In applying these models to the feline immunodeficiency virus, we seek to identify the
number of and membership of distinct clusters of the virus. Several Bayesian cluster models
for genetic data have been implemented in freely available software. Two popular software
packages are STRUCTURE (Pritchard et al. 2000) and GENELAND (Guillot et al. 2005b),
where STRUCTURE implements non-spatial models and GENELAND implements both
spatial and non-spatial models. Excoffier and Heckel (2006) provide a comprehensive
review of many software packages for analyzing genetic data, including those specialized
for studying population genetic structure with individual-level data, such as GENELAND.
There are also reviews of methods appropriate for analysis of genetic data, in particular
when the impact of landscape features on genetic structure is of interest (Manel et al. 2003,
Storfer et al. 2007).

The virus sequence data do not neatly fit into the data structures assumed by some software
implementations. In our case, in order to apply the Bayesian cluster models in GENELAND
to virus sequence data, one would have to first recode the bases to integers to mimic alleles
(Guillot et al. 2009b). Therefore, we recoded the FIV sequence bases in a manner similar to
alleles for a haploid organism. There is one allele per locus in a haploid organism, hence we
began with 1423 loci per infected cougar. We next removed any locus where there was no
variation expressed across the sample of cougars, i.e. no polymorphism. This step reduced
the dimension of the data to 572 loci per cougar. This is still a relatively large number of loci
and can lead to computational challenges in using the Bayesian cluster models.

The Bayesian classification models in GENELAND are based on work by Guillot et al.
(2005a, 2005b) and we briefly review relevant model details now, while also drawing from
Guillot (2009). The spatial locations are denoted as s = (s1, …, sn) for n sampling locations,
where si is a two-dimensional vector of coordinates. The genotypes are denoted as si, where
zi is a vector of L alleles for each cougar. The genotype Zil at locus l for individual i is
denoted by the allele αil for haploid organisms. The n individuals can be grouped to form K
populations, where K is either estimated in the model or fixed a priori. When K is estimated
in the model, it is assumed to follow a uniform distribution on 1 and a user-defined
maximum. The allele frequency of allele j in locus l in population k is fklj. The allele
frequencies are assumed to vary across subpopulations and for haploid organisms are
assumed to be uncorrelated across populations in GENELAND. The uncorrelated allele
frequency assumption is a common one in population genetics (Guillot et al. 2005a). For
haploid organisms, the model assumes the genotypes follow a multinomial distribution
conditional on allele frequencies and population membership. The model assumes Hardy-
Weinberg equilibrium (HWE) holds in each subpopulation for each locus and that there is
linkage equilibrium. The HWE assumption equates to assuming that alleles in each
subpopulation are sampled independently from a shared vector of allele frequencies fklj. The
HWE assumption for haploid organisms is written as
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(1)

where p = (p1, …, pn) is a vector of subpopulation membership for individuals. The
likelihood of observing the genotypic data given the parameters θ is written

(2)

The distinguishing feature between the spatial model and the non-spatial model in
GENELAND is the assumption of spatial correlation of genotypes in the spatial model. This
assumption is realized in the spatial model through a marked Poisson-Voronoi tessellation
process. The model assumes that the K subpopulations partition the study area into non-
overlapping areas Δ1,…,ΔK. There are m Voronoi polygons in the tessellation that are
combined to form K the subpopulations. The polygons have nuclei (u1,…,um), which are

random and uniformly distributed, . The number of polygons is
assumed to follow a Poisson distribution, m ~ Poisson(λ). The mark, or “color”, (c1,…,cm)
for each polygon defines the subpopulation membership and is sampled from a uniform

distribution, . The subpopulation membership for each
individual, pi, is determined from the Voronoi polygon that contains the individual. The
level of spatial organization in the process is controlled by the parameter λ, which has a
uniform distribution with a maximum taken as the number of sampled individuals, λ ~ U(0,
n). A small λ, and therefore m, results in strong spatial organization and hence clearer spatial
boundaries between groups. For a very large λ, each Voronoi polygon would contain at most
one observation and the tessellation model would produce results similar to that from an
independent and identically distributed (i.i.d.) mixture model. In the non-spatial model in
GENELAND, the prior for the vector of individual population membership, p=(c1,…,cn), is
an i.i.d. prior, π (p | K) = 1/Kn. The choice of prior is determined from an a priori belief of
whether or not landscape features influence genetic differentiation, where one would select
the spatial prior if one believed that landscape features indeed influenced genetic structure.

Parameter inference for the Bayesian cluster models in GENELAND comes from a
reversible-jump Markov chain Monte Carlo (MCMC) algorithm, which samples from the
joint posterior distribution of the parameters, π(θ|s,z). The model parameters are denoted by
the vector σ = (K,m,u,c,f) for the spatial model assuming uncorrelated allele frequencies. In
addition to the subpopulation memberships, GENELAND provides the posterior
probabilities of membership in each of the K subpopulations for each individual through
results of the MCMC algorithm.

For the following analysis, we used the library GENELAND in R. As a comparison, we
used both the non-spatial and spatial models in GENELAND to determine the number and
composition of FIV clusters under the two different modeling assumptions. We followed the
suggestion of Guillot et al. (2009b) and used an iterative estimation approach, first
estimating K in one MCMC run and then estimating the other model parameters in another
MCMC run with K fixed at the previously estimated value. We repeated this process for
both the non-spatial and spatial models. For each model, we used 500,000 iterations of the
MCMC algorithm to sample from the joint posterior distribution, thinning every 100th

iteration, with a burn-in of 100,000 iterations. We visually inspected the MCMC results for
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convergence to the joint posterior distribution. We used R and ArcGIS (ESRI 2005) to map
the estimated FIV clusters.

In addition to the non-spatial and spatial models, we also fitted a spatial model with
uncertainty in the spatial sampling coordinates to represent a home range for each cougar.
GENELAND models a home range by treating each true coordinate ti as a sum of the
sampled location coordinates and a random noise, ti = si +δi. The additive noise term is δi
sampled uniformly from a square centered on (0,0). As a first step in including spatial
uncertainty, we selected a square with 25 mile sides for a representation of a very large
home range for a male cougar. We chose a large home range to account for additional
uncertainty in sampling location that could come from the hunting of cougars.

3.2 Results
Both the spatial and non-spatial models found two differentiated FIV clusters. A finding of
one FIV cluster would indicate there is no differentiation in the virus sequence data, and
would suggest that there are no barriers to transfer of FIV in the population. In fact, the two
models identified the same two spatially distinguishable FIV clusters, i.e. the cluster
membership is the same for both models (Figure 4). The cluster membership assignments, 1
or 2, for each cougar are based on the posterior probabilities of cluster membership. There is
no spatial overlap in the clusters, as a curved line drawn would separate the clusters.
Contour lines of the posterior probabilities of cluster membership based on calculating the
probability of being in each cluster for each cell in a grid placed over the study area give an
approximation of the boundary separating the two clusters. The approximation is especially
rough where there are few data points. The contours of posterior probabilities of
membership in FIV cluster 2 show a fairly steep decline in the probability of belonging to
cluster 2 (Figure 5), with a decrease from a probability of 0.9 to 0.1 over a relatively small
distance. Only a few cougars in cluster 1 have a probability > 0.1 of being in cluster 2, and
these are located in the immediate border area. We assessed the level of differentiation in
FIV clusters using the FST value (Weir and Cockerham 1984), which is a commonly used
measure in landscape genetics to measure population differentiation. The FST value of 0.21
for the two clusters indicates there is limited flow of FIV between the two clusters.

The adjustment for uncertain location within cougar home ranges in the spatial model
changed the subpopulation assignment for three cougars along the boundary area between
the two clusters (Figure 6). The boundary between the two FIV clusters in the model that
adjusts for home range is now effectively a straight horizontal line, indicating a clear
boundary dividing the study area into a northern area and a southern area. Two cougars in
cluster 2 switched to cluster 1 and one cougar from cluster 1 changed to cluster 2 when
adjusting for spatial uncertainty. This result is sensible if the locations of these three cougars
were moved from the north of the barrier to the south of the barrier, or vice versa, when
adjusting for home range, while the rest of the data were influential in demarcating the same
barrier location as previously determined. One might expect that the location of the barrier
between the clusters may become spatially fuzzier when adding spatial uncertainty to the
sampling locations, but in this case the barrier is effectively unchanged, as determined from
the majority of the data. The overall consistency in the composition of the FIV clusters from
the three different models provides a degree of confidence in the clusters found by the
Bayesian spatial cluster model, and strongly suggests that the spatial prior is not overly
influential in the delineation of FIV clusters.

Biek et al. (2003) noted that different FIV subtypes should be expected with a mobile host
such as free-ranging cougars and that intermixing of distinct subtypes indicates extensive
cougar movement. Biek et al. (2006) observed spatial structure in FIV, but did not quantify
it, and hypothesized that it was a temporary phenomenon related to cougar populations
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rebounding from a recent bottleneck. Spatially distinct FIV subtypes suggest some physical
barrier to host intermixing. Given the obvious boundary between the FIV clusters estimated
from the Bayesian cluster models, we next investigated the correspondence between the FIV
clusters and certain relevant landscape features to determine the plausibility of a landscape
barrier effect on FIV flow in this sample of cougars. It is not possible in the Bayesian
clustering models in GENELAND to adjust cluster membership probabilities for covariates,
such as potential landscape barriers. Instead, we overlaid predicted cluster membership from
the spatial model with the landscape layers of average annual precipitation, major rivers, and
major roads and assessed their spatial alignment. We selected these landscape variables in
advance because they were thought to impact the movement of cougars over space. Previous
work suggests landscape barriers to genetic flow in cougars and other carnivores in the form
of roads (Riley et al. 2006), water bodies (Ernest et al. 2003), and habitat barriers (Walker et
al. 2000, McRae et al. 2005). We used ArcGIS to map FIV cluster membership and
landscape thematic layers. The landscape thematic layers for major roads and major rivers
are from ESRI. The thematic layer for average annual precipitation during 1961-1990 is
from the Spatial Climate Analysis Service at Oregon State University.

The map of FIV clusters and landscape features suggests that Interstate Highway 90 has
influenced FIV structure in this cougar population (Figure 7). The map was constructed to
focus on the border area dividing the two FIV clusters. Interstate Highway 90 predicts the
membership for all but two cougars in the area of cluster separation. North of the highway is
generally cluster 1 and south of the highway is cluster 2. This interstate highway has existed
for decades and it is a plausible biological barrier (or at least impediment) to cougar
movement and FIV flow in this area. The other landscape features considered (major rivers
and average annual precipitation) do not align well with the structure in FIV.

In addition to association between virus clusters and landscape features, we were interested
in whether spatial structure in FIV aligned with previously determined genetic population
structure in this sample of cougars (Biek et al. 2006, Wheeler and Waller 2010). One
hypothesis is that there could be some alignment in disease prevalence and genetic
population structure, as the flow of host genes and virus among subpopulations may be
correlated. The map of genetic subpopulations found by Wheeler and Waller (2010) and FIV
clusters (Figure 8) shows that the genetic subpopulations and FIV clusters do not align
spatially. FIV cluster 2 is effectively a subset of the cougar genetic subpopulation in the
eastern portion of the area. There are two prominent north-south landscape barriers, a major
highway and a major river, for the genetic subpopulations, but one east-west landscape
barrier for the FIV clusters. While both genetic population structure and FIV structure are
aligned with interstate highways, they do not align with the same highways. One possible
scenario to explain this pattern is that a relatively new lineage of FIV entered into the study
area from the south and has not had adequate time to cross the highway landscape barrier.
Biek et al. (2006) found that FIV lineages are spatially expanding over time and this,
combined with the thought that recovery of cougar populations from sharp population
declines during the early 20th century happened earlier in Alberta than in southern locations,
could explain the smaller geographic area occupied by FIV cluster 2. The temporal
dynamics of FIV, unmeasured here, are likely very influential on the observed FIV structure.
It is reasonable to expect that in the future, the structure of FIV lineages will be similar to
the genetic population structure of cougars (Biek et al. 2006). Nevertheless, it is also not
entirely surprising that the genetic population structure does not align exactly with the FIV
structure. Each outcome represents a different process taking place over the landscape. FIV
is a fast-evolving virus and its pattern can reveal recent demographic history about its host
that genetic population structure of the host cannot (Biek et al. 2006).
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4. Discussion
In this analysis, we found a non-uniform spatial distribution of FIV prevalence in cougars
and an overall prevalence of 0.28 and evidence for spatial structuring of FIV that aligned
with an interstate highway in Montana. While our results are interesting and motivating,
there are several limitations to our analyses. One limitation is that while we found a
correspondence with FIV structure and a landscape feature, we have not formally quantified
how this landscape feature has affected virus differentiation. While there is a clear spatial
boundary in the FIV structure, we cannot formally explain this structure using the landscape
with confidence. Ideally, one would include suspected landscape barriers to host movement
in a Bayesian cluster model and quantify the effect of these landscape variables on the
pattern of virus differentiation.

Another limitation of our analysis is that the sample of cougars we analyzed may not be
spatially representative of the larger cougar population in this region of North America.
Some of the cougars were collected by hunters, and since there are geographic areas where
cougar hunting is prohibited, cougar populations from these areas will likely be
underrepresented. This could potentially distort the pattern of FIV structure we found if FIV
structure is related to landscape features in areas with no observations. There are some
discontinuities in the sampling distribution of cougars (Figure 1), and we would obviously
fail to capture any FIV structuring in unsampled areas. Similarity in FIV sequences on
different sides of sampling discontinuities, however, suggests a lack of unmeasured FIV
structure. We also assumed the sample was representative in terms of FIV status, such that
cougar behavior was not altered significantly by FIV-positive status to result in different
hunted rates by FIV status. There is no way to verify this assumption, but the fact that the
crude FIV prevalence for the sample (28%) is very similar to the overall estimated
prevalence in the Americas (30%) gives some measure of confidence that this is not a major
issue with these data. While we do not have a spatially uniform sampling plan, due to local
variations in cougar presence and hunting regulations as noted above, we do not anticipate
differential effects between FIV positive and FIV negative groups. As a result, local
comparisons are valid, but may vary in local power to detect differences depending on the
local sample sizes relative to sample sizes from other areas. Our goal in the descriptive
analysis of FIV was to determine whether the patterns of FIV positive and FIV negative
cougars differ from one another, not to determine whether either provides an unbiased
estimate of the spatial distribution of cougars. Another drawback of this study is not having
temporal data to supplement the geographic data. Without temporal information for each
cougar, our spatial analysis cannot capture variation in FIV distribution over time. This
temporal information is especially critical for studying the spatial spread of FIV over time
(Biek et al. 2006).

One ambiguity in this analysis is how the assumptions of Hardy-Weinberg equilibrium
within populations and linkage equilibrium among loci in genetic data hold with high-
dimensional virus sequence data. With so many loci (recoded nucleotide bases), it is likely
there is some linkage disequilibrium, or dependence in pairs of loci. One naïve way to
diminish this potential situation is to decrease the number of loci used in the Bayesian
cluster model. In a secondary analysis, we used random samples of 10%, 20%, and 50% of
the loci in spatial models in GENELAND and in each case found cluster membership results
consistent with the spatial model with 100% of the loci. This suggests that if there is a
violation of the linkage equilibrium assumption, it is not influential on the model results. In
another sensitivity analysis, we used the eight virus lineages defined by Biek et al. (2006) as
the outcome variable to be modeled in GENELAND and found essentially the same FIV
cluster membership pattern when there were two clusters. Both sensitivity analyses suggest
robustness of results with respect to these underlying issues.
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There are several public health implications from this research. Public health focuses on
prevention and populations, and there is considerable interest in public heath in infectious
diseases and zoonoses, such as rabies, West Nile Virus, SARS, avian influenza, Lyme
disease, and Ebola virus. Disease ecology and landscape genetics involve studying the
complex interactions in how disease spreads through a population, whether looking at the
movement of the virus or disease host, often with the hope of controlling or preventing
future disease spread. The relevance of investigating landscape features is that the landscape
can influence the spread of an emerging disease, and understanding this influence enables
more accurate predictions of disease spread, enhanced planning of appropriate responses,
and improved design of intervention strategies. The methods and types of data utilized in
this study should be applicable to a wide range of systems and species in public health
analysis. One immediate example of a potential application of these methods is in modeling
the spread of raccoon rabies, where the identification of landscape features that slow or
prevent spread could be used to allocate scarce vaccine resources in areas of forecasted
high-spread potential (Biek et al. 2007, Wheeler and Waller 2008). Analyzing virus structure
could assist in predicting direction and time of disease spread. Combining this information
about spread with landscape feature influence should improve predictive models of disease
transmission.

Taking into account spatial correlation when considering an infectious disease seems
particularly important, especially in an animal population where long-distance contact is less
likely than in human populations and clustering in the genetic host is likely. This is
particularly relevant for public health implications in a zoonosis. However, many currently
utilized methods in disease ecology to determine virus lineage (of which we are aware) do
not make explicit use of spatial correlation. Hence, there are many opportunities for further
methodological research developments in this area.
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Figure 1.
FIV infected and uninfected for sampled cougars in Rocky Mountain region
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Figure 2.
Density of cases and non-cases of FIV
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Figure 3.
Log relative risk surface for FIV (left) and log relative risk contour lines (right) calculated
from the ratio of FIV infected cougar density to FIV uninfected cougar density. Hatches
(“+”) indicate significantly elevated log relative risk based on Monte Carlo randomization of
case labels
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Figure 4.
FIV cluster membership from the spatial model
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Figure 5.
Contours for probability of membership in FIV cluster 2
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Figure 6.
FIV clusters for spatial model (left) and spatial model with home range adjustment (right)
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Figure 7.
FIV cluster membership and landscape features
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Figure 8.
FIV cluster membership and genetic subpopulation membership
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